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A COMPARISON OF NORMAL AND
ELLIPTICAL ESTIMATION METHODS IN
STRUCTURAL EQUATION MODELS

ABSTRACT

Monte Carlo simulation compared chi-square statistics, parameter estimates, and root mean
square error of approximation values using normal and elliptical estimation methods. Three research
conditions were imposed on. the simulated data: sample size, population contamination percent, and
kurtosis. A Bentler-Weeks structural model established tﬁe relationship between the sample variance-
covariance matrix and the specified population model. The elliptical generalized least squares
estimation method provided the better chi-square results in the presence of kurtosis. The parameter
estimates were similar across research conditions for both the normal and elliptical estimation methods.
The root mean square error of ;approximation values were robust in the presence of kurtosis for the
elliptical estimation methods. The root mean square error of approximation is therefore the preferred
inferential approach to assessing model fit in the presence of kurtosis because of known distributional

properties and determination of confidence intervals for hypothesis testing.



A COMPARISON OF NORMAL AND
ELLIPTICAL ESTIMATION METHODS IN
STRUCTURAL EQUATION MODELS
Some type of estimation method is used in all parametric statistics, e.g., regression analysis,

factor analysis, diécriminant analysis, and canonical correlation analysis (Ferguson & Takane, 1989).
The various estimation methods are used to derive sample estimates of éOpulaﬁon parameters
(Marcoulides & Hershbergef, 1997). The estimation methods however produce different results
depending upon assumptions made by the researcher. In structural equation rr;odeling, various normal
and elliptical estimation methods can be used to estimate population parameters from sample data.
Least squares (LS), generalized least squares (GLS), and maximum likelihood (ML) estimation
procedures assume a normal distribution (Bollen, 1989). Elliptical LS (ELS), Elliptiéal GLS (EGLS),

and Elliptical re-weighted least squares (ERLS) procedures assume an elliptical distribution (Bentler,

1992).
RELATED RESEARCH LITERATURE

In practice, one typically does not know the population variance-covariance and the
population parameter(s). Hence, an estimation method is used to obtain sample estimates of the
unknown popuhtion parameter(s) based on the sample variance-covariance matrix. Once sample
parameter estimates are derived, one can compute the model implied sample variance-covariance

matrix, X . Sample parameter estimates are derived such that ¥ is as close to S as possible. The



difference between S and X is typically indicated by a chi-square statistic, althpugh the root mean
square of approximation is also recommended (Schumacker & Lomax, 1996). Obviously, if S - £ =
0, then the sample parameter estimates derived from the estimation method perfectly reflect the
population parameters based on the fit function, F( S, £(0)), and chi-square equals zero.

NORMAL DISTRIBUTION THEORY

The normal distribution with certain statistical assumptions has played a fundamental role in
multivariate statistical analysis (Muirhead, 1982). A sufficient condition for the underlying normal
distribution assumption to hold is that the obserQed variables dovnot have excessive kurtosis. Basically,
the kurtosis of each observed variable should equal zero, which is the kurtosis of a normal distribution
(Bollen, 1989; Browng, 1974). In structural equation modeling, several normal estimation methods are
available depending upon the fit function.

The leést squares estimation method (L.S) which assumes multivariate normal distributed
variables minimizes the following fit funétion: Fis = .5 tr [(S - X)?] where the degrees of freedom are:
df=5@+q@{+qg+1)-t and t=the number of independent parameters to be estimated, n = the
number of observations or sample size, (p + q) = the number of observed variables analyzed, and tr =
the trace or diagonal sum of the matrix elements (Schumacker & Lomax, 1996). The fit function is
equal to (n - 1) F5 , which yields a chi-square statistic. The generalized least squares estimation
method (GLS ) yields the following fit function: Fgis = 5 tr[(S - Z) S'J?, where S is a positive
definite weight matrix of residuals derived from differences in the maﬁix elements(ie, S-X). The

default estimation method in most computer programs is the maximum likelihood estimation method,
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which can be derived by assuming that the observed variables are multivariate normal distributed. The
ML parameter estimates are ob@ed by minimizing the following discrepancy function: Fyy, = tr (S
XY-(p+q+In|X|-In|S| Ifthe covariance matrix, S, is close to the predicted population
matrix, X, then the sample data fits the model, and F, approaches zero (i.e., if £ =S, thenln |Z |- In
| S| =0). Likewise,if I =S, then the trace or sum of the diagonals will be approximately equal to (p
+ q), the number of observed variables analyzed, and the value of tr (S X') - (p + q) will approach
zero. In large samples and under specific conditions ( Browne, 1974, 1984; Joreskog, 1967 ), (n-1
Y ~ X%, where (p* - @) and p* = i)(p+l)/2 are the degrees of freedom and q is the number of
parameters tc; be estimated. Therefore, the ML fit function yields a chi-square statistic.

The multivariate normal distribution of z variables has a mean vector, |4, and a covariance

matrix, 2, described by the density function:

Yy 1 2272

- J2rm ¢

where Y = height of the normal curve for z variables, T = a constant 3.1416, and e = base of

Napierian logarithm = 2.7183 (Ferguson & Takane, 1989). Standard score variables have a mean =

0 and a standard deviation =1, so 4 =0 and 0 = 1. The area under the normal distribution is unity

(see Figure 1).

Insert Figure 1 Here
(Normal Distribution)



A general formula to derive sample parameter estimates in a structural equation model

given the normal distribution assumption is (Bentler, 1992):

Oy = 27'v|(s- ym .

The weight matn'x, denoted as W, in this general formula, is replaced by any of the three normal theory
estimators of 2"

(a) W,= I (identity matrix) gives normal least squares(LS)
(b) W, = S™! gives normal generalized least squares(GLS)

(c) W, = 2! gives normal re-weighted least squares(ML).
ELLIPTICAL DISTRIBUTION THEORY
Elliptical distributions are based ona broad class of distributions that include both heavy and light
tailed symmetric distributions relative to

o(f) = ei“l'l// @'v,). the normal distribution. The

characteristic function of an elliptical distribution for some function Y ( Muirhead,1982) is of the form:

Form 22, Berkane and Bentler (1986) defined



(m) (0 ‘ _
x(my+1=2 "0 ,
(' (0))" where Y™(0) and r'(0), respectively, are
the m™ and the first derivative of s, evaluated atzero. Assume =0 without loss of generality, and M. iom

= E(X;, Xp.. Xom, Berkane and Bentler (1986) showed that, if i = i, =... =i, =L, then:

This relationship characterizes the elliptical distn'butiori, i.e., if a random variable y has density {, (y), ifall
odd moments are zero, and if the (2m)™ moment exists and is defined by M, = C(m)(K,)™, for some
constrained C depending on m, then y is elliptically distributed.

The multivariate elliptical distribution of y variables has a mean vector, [4, and a covariance matrix,

2., described by the following density function (Bentler, 1992):
k det(2) 2 g(ky(z- )27 (2 1))

where k; and k, are constants and g

2m __ (zm)!(l('(m) +)(p®)” is a non-negative function. This

: 2" m!

density function yields an elliptical



distribution. The y variables have a common kurtosis parameter of:

whichdescribes the tails of the distribution relative to the multivariate normal distribution. The multivariate
normal distribution is therefore a special case of the multivariate elliptical distribution when K = 0. Values
for the parameter K, other than 0 (zero), characterize elliptical distributions (Berkane & Bentler, 1987a;

1987b).

Insert Figure 2 Here
(Elliptical Distribution)

A general formula to derive sample parameter estimates givenan elliptical distribution assumption

(Bentler, 1992) is:

QE =2 1(k+. 1) 1tr[(S— S)Wz]2 - d[tr(S— S)Wz]'z

The weight matrix, denoted as W, in this general formula is replaced by any of three elliptical
estimators of X' :
(a) W, =1 (identity matrix) gives elliptical least squares(ELS) estimates;

(b) W, =S (fixed) gives elliptical generalized least squares(EGLS) estimates;
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(c) W, = I (iteratively updated) gives elliptical re-weighted least squares(ERLS) estimates.

The Mardia-based K coefficient (Mardia, 1970; 1974) can be used in computing elliptical

computations (Bentler, 1992). The default computation of k (Shapiro & Browne, 1987) is given by:

= —gz'p
- p(p+2)

2

where, g,,=N"'Z) (2,—2)'S"(2,—z_) -p(p+2)

is the deviation from the expected multivariate Mardia-based K kurtosis value. The z notation references

raw score and mean vectors, respectively. The normalized (standard score) estimate is given by:

g2,p
Bp(p+2)/ N)'"*

which, in large samples, operates the same as the unit normal variate in the normal distribution. The
normalized estimate can be used to test the null hypothesis of multivariate normality.

The relative merits of altemnative estimators of K has not yet been established (Bentler, 1992).
In non-elliptical populations, these estimators do not necessarily converge. The Mardia-based k
coefficient, however, does have asymptotic expectation and variance, such that:

E(k)=k.

10



The use of normal or elliptical distributions in structural equation modeling is based on theoretical
considerations. It is possible that failures of normal or elliptical estimation methods can be associated
with the estimation of K (Tyler, 1982 & 1983). In most estimation methods, however, an assumption
underlying the fit function is that the variables have some particular multivariate distribution, either
normal or elliptical. Consequently, the chi-square (%?) test is used as a goodness-of-fit test (fit
function) between S and ¥ , given optimal sample weight estimates.

CHI-SQUARE, PARAMETER ESTIMATES AND KURTOSIS

Chi-Square

A number of studies have investigated the chi-square statistic in normal and non-normal data
samples. In non-normal samples containing kurtosis, the chi-square statistic based on the ML
estimation method was too large, causing the rejection of a true structural equation model too often (
Bentler, 1992; Harlow and Newcomb, 1984; La Du and Tanaka, 1989; Muthen and Kaplan, 1985;
Tanaka, 1984). In studies using ML estimation with normal samples, the chi-square statistic had little
bias with samples ranging from n> 30 (Geweke & Singleton, 1980), to n = 200 (Boomsma, 1983), to
n =500 (Browne, 1982, 1984), to n = 1000 (Muthen & Kaplan, 1985). Wang, Fan, and Willson
(1996) explained that the adjusted chi-square test (Satorra-Bentler re-scaled chi-square) reported in
the presence of elliptical distributed daté can provide acceptable conclusions given an appropriate
sample size that balances the statistical power of the test with sampling variation. Hoogland and
Boomsma (1998) suggested that the ML chi-square statistic often rejected the true model when the

sample size was smaller than five times the number of degrees of ﬁeedom of the model. When the

11



observed variables had an average positive kurtosis as large as 5.0, the sample size may have to be
increased by up tol0 times the size of the model. Given that the model is appropriate, the GLS chi-
square statistic may have an acceptable performance for a.sample size that is two times smaller than the
sample size needed for an acceptable performance of the ML chi-square statistic.

Weng and Cheng (1997) recommended that although chi-square values given by ML, LS, and
GLS estimators differ, the effects of this discrepancy on relative fit indices may diminish as sample size
increases. For example, if a model fits the data and the sample size is very large, ML and GLS

estimation methods yield a very similar chi-square statistic (Browne,1974).

Parameter Estimates

The effects of various estimation mgthods on the parameter estimates in structural equation
models has also been studied. Harlow(1985) concluded that ML and ERLS parameter estimates were
comparable in a Monte Carlo factor analysis simulation study. Muthen and Kaplan(1985) found no
difference between parameter estimates using the ML and GLS estimation methods. Henly(1993)
pointed out a striking similarity between ML and GLS estimates. Wang, Fan, & Willson(1996) also
found the results from the ML and GLS methods to be practically identical, except for some
insignificant differences.

Boomsma(1983) in a Monte Carlo study using ML estimation with normal continuous data,
found that “Generally for N >200 there is little bias in estimating parameters...”’(p.116). Boomsma also
examined categorical, skewed, and kurtotic data, and he concluded that parameter estimates were

unbiased for N = 400 using the ML estimation method. Boomsma’s findings were supported ina

12



10
Monte Carlo study by Muthen and Kaplan(1985) which studied estimates based on ordered
categorical data using ML, GLS and ADF estimation methods. Muthen and Kaplan found that ML,

GLS, and ADF methods were unbiased when using a sample size of 1000. Browne (1982, 1984)

.conducted a Monte Carlo study of ML and ADF estimation in both normal and non-normal continuous

data with N = 400 and N = 500. Browne further suggested that parameter estimates were unbiased

when using ML estimation in normal samples.

Hoogland and Boomsma (1998) found that the bias of ML parameter estirﬁates increased when
the level of univariate skewness and kurtosis deviated increasingly from normai theory values.
Hoogland & Boomsma also suggested that a larger sample. size(n > 500) was a femedy for obtaining
unbiased parameter estimates. Wang, Fan, and Willson(1996) concluded tha_t population parameter
mean estimates across 100 replications approached the popﬁlation values as the samble size increased
from 200 to 1000. The differences between the minimum and maximum parameter estimates
decreased remarkably with an increased sample size. The quality of parameter estimates was not of
much concern even with non-normal data, provided that appropriately large samples were used.
Wang, Fan, and Willsén also found thgt the parameter estimates appeared to stabilize when the sample
size reached 500. Weng and Cheng(1997) comparéd the three normal theory estimators and found
that ML and LS estimation methods yielded identical parameter estimates, which were slightly different
from GLS estimates.

Kurtosis

A number of studies have examined the impact of kurtosis in non-normal data. Browne (1982,

13
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1984) developed an asymptotic distribution free index which permitted the use of a generalized least
squares estimator even when the variables exhibited excessive kurtosis (“peakness”) or insignificant

* kurtosis(“flatness”) in the multivariate normal distribution. Social scientists frequently are concemed
about the skewness in their data; however, Browne indicated that it is kurtosis, not skewness, that was
critical because kurtosis is a term in the mathematical expression for the covariances. That is, when
data are not normally distributed, the researcher must know about the variables kurtosis, as well as the
variable means and covariances, in ofder to make inferences about individual patterns of scores.

Harlow (1985) studied elliptical distributed data in factor analysis and found the ERLS (
Elliptical reweighted least squares) estimation method performed the best under various levels of
kurtosis (k > 0). Hoogland and Boomsma (1998) further concluded that the bias in paraméter
estimates increased when the absolute value of kurtosis increased. They discovered a remarkable
effect on the sign of the kurtosis, namely, the bias of ML estimates is positive for platykurtic
distributions and negative for leptokurtic distributions. Bias becomes most extreme when the underlying'
distribution is highly leptokurtic.

The elliptical distribution differs from the normal distribution based on kurtosis in the sample
data. One would therefore expect the chi-square statistics, parameter estimates, and root mean square
error of approximation values to differ when comparing results from these two distributions. It is
anticipated that, normal estimation methods in structural equation modeling would yield biased results
when using non-normal sample data. Moreover, elliptical estimation methods should out perform

normal estimation methods given elliptical data distributions.

14
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METHODS AND PROCEDURES

The EQS 5.7 software program (see appendix) permitted the specification of different population
data contamination percentages ( .05 and .10), sample sizes (1000, 5000, 10000), and kurtoses (1, 2, 3),
which followed suggestions by Mattson (1997) and Mooney (1997). This yieldeda2 X 3 X 3 design with
18 unique research conditions. The EQS 5.7 program generated a sarhpling distn'Bution based on 100
replications of these conditions. The fit function ()(?), structural coefficient ('y), and ?oot mean square error
of approximation values were saved in separate files and compared in tables across these research
conditions.

Simulated Data Sets

~The EQS 5.7 software program (Bentler & Wu, 1995) was used to generate pseudo-random
samples of data to compute the sample variance-covariance matrix. Previous research by Bang and
Schumacker (1998) has indicated that pseudo-random number generators don’t produce normal
distributions of data with sample sizes less than 10,000. Three sample sizes of 1000, 5000, and 10000
were chosen for the study to reflect this lack of normality in pseudo-random number generators when
comparing the estimation methods.

Non-normal distn'butiqns were created by generating a normal distribution with i and X, and
adding a smaller percent non-normal distribution with the same [, but with a variance-covariance equal
td K * X. The scale factor, K, which creates the non-normal population, ranges between 1 and 10.
The present study used values of K = 1, 2, or 3, because the use of values greater than 3 generated

elliptical data which failed to converge using either normal or elliptical estimation methods in the study.

15
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The smaller percent non-normal distribution which is added to a normal distribution can range between
0% and 100%, but is usually 10% or less; 5% and 10% were used in the study. Structural equation
modeling estimates are typically asymptotic, meaning that they approach the true population value as
sample size inéreases. These sample sizes are therefor§: suitable, especially since several researchers
(e.g., Bentler,1992; Browne, 1982,1984) have suggested that larger sample sizes may be needed when

estimation methods are based on fourth-order moments (kurtosis).

Structural Model

Gerbing and Anderson (1992, 1993) suggested that using substantively meaningful models in
Monte Carlo simulation may increase our understanding of th‘e results and that most simulation studies in
structural equation modeling have used from two to six latent variables, with two to six indicators for
each latent variable. In this study, a specific population model was simulated based on the Bentler-
Weeks (Bentler & Weeks, 1980) structural equation model (see Figure 3).

The number of distinct values in the sample variance-covariance matrix is ten (10). This can be
calculated as: .5 (p + q) (p + q + 1), where p = the number of dependent variables and q = £he number
of independent variables. The degrees of freedom for the chi-square statistic is calculated as the number
" of distinct values in the sample variance-covariance matrix minus the number of parameters to be
estimated. Since there are ten distinct values in the sample variance-covariance matrix and six

parameters to be estimated in the model (four E’s, D2, and ), the degrees of freedom is equal to four.

16
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Insert Figure 3 Here
(Bentler-Weeks Model)

The Benti_er-Weeks structural model is specified in the EQS 5.7 software program using the
“/EQUATION” command to generate the population variance-covariance matrix (see appendix). The
EQS program ‘“/EQUATION” command specifies fixed factor loadings of .80 (validity coefficients) for
the observed variables that identify both the exogenous factor, F1, and the endogenous factor, F2. The
“/EQUATION” command further indicates that V1 and V2 are two observed v‘ariables that are
indicator (manifest) variables of F1 (exogenous factor) and that V3 and V4 are two observed variables
that are indicator (manifest) variables of F2 (endogenous factor). A structural coefficient indicates that
F1 predicts F2. The following set of “/EQUATION” command lines indicate the Bentler-Weeks

structural equation model in the program:

/EQUATIONS
V1= 8*F1+El;
V2 = 8*F1 + E2;
V3 = 8*F2 + E3;
V4= 8*F2 + E4;
F2= *F1+D2;

where V1-V4 are observed variables, E1-E4 are measurement errors of the observed variables, Fl1and

F2 are factors (latent variables), and D2 is the error of prediction for F2.

Data Analysis

17
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The EQS 5.7 software program (Bentler & Wu, 1995) was used to simulate normal and
elliptical distributions of data (see Figures 1 and 2) and estimate chi-square, structural coefficient, and
root mean square error of approximation values for 18 unique research conditions based on sample size,
population contamination percent, and kurtosis. The EQS 5.7 software program is annotated to indicate
which command lines were changed for each of the research conditions. For example, “CASES” was
used to specify the different sample sizes, “METHODS” was used to specify pairs of normal and
elliptical estimation methods, and “CONTAMINATION” was used to indicate the smaller percent non-
normal distribution and kurtosis factor. A sampling distribution based on 100 replications using a
pseudo-random number generator with different seed values produced a point estimate for chi-square,
parameter, and root mean square error of approximation values. The EQS 5.7 software program
provided the necessary summary statistics.

The model chi-square values can be compared against a critical chi-square value of 9.488 at the
.05 level of statistical significance for four degrees of freedom and a root mean square error of
approximation value equal to or less than .05, implying a close fit. Kurtosis values should be greater
than the value of k > -2/(p+2), where p is the number of measured variables (Bentler and
Berkane,1986; Tyler,1982). Given 4 measured variables, k > -.25. The user should be aware that the
application of elliptical distributions to structural equation modeling is based on theoretical
considerations. There is little experience that can be used to provide guidance on how to avoid
breakdowns in the method, i.e., misleading results. It is possible that potential failures of elliptical
estimation methods can be associated with poor estimation of k, hence poor estimation of the sample

variance-covariance matrix.

18
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Monte Carlo simulations were conducted based on generating data from a known population
model, then estimating this true population model under different research conditions. Consequently,
power determination was not required in the study. In practice, testing a null hypothesis of model fit
.requires power and sample size considerations. Schumacker and Lomax (1996) and MacCallum,
Browne, and Sugawara (1996) provide programs and recommendations for power calculations and
sample size. For example, the Hoelter critical N, which is CN = ( 2/F ) + 1, gives the sample size at
which F would lead to a rejection of the null hypothesis. | Their programs also use modification index
values and root-mean-square error of approximation (RMSEA) values. The RMSEA values, together
with the degrees of freedorﬁ (df) for the model, the sample size (n), and Type I error rate (alpha) are
used to calculate power. RMSEA <= .05 are considered a 'close fit'; vaiues between .05-.08 are

considered 'fair fit', between .08-.10, 'mediocre fit', and RMSEA > .10, 'poor fit'.
RESULTS

The chi-square values at k = 1 for both normal and elliptical estimation methods yielded similar
resuits across the research conditions. These findings were expected because only sample size effects
were present, with percent contamination having no impact. The results more clearly reflect the outcome
of data generated using a pseudo-random number generator (An average chi-square value of 3.84 was
obtained from the sampling distribution based on 100 replications using a normal distribution with
sample sizes greater than 10,000). The structural coefficients were similar for both normal and elliptical

estimation methods across the research conditions. The root mean square error of approximation

19
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(RMSEA) was robust across the research conditions for all estimation methods, except under extreme

levels of contamination (10%) and kurtosis (k=3).

Least Squares Estimation

The normal least squares (LS) and elliptical least squares (ELS) estimation methods are
compared in Tables 1 to 6. As the percent non-normal data and kurtosis increased, the chi-square
values increased, but the eiliptical least squares estimation method computed lower chi-square values.
The structure coefficients and root mean square error of approximation values (RMSEA) remained
similar, but were more distorted under conditions of extreme percent contamination (10%) and kurtosis
(k=3). The least squares estimation method failed to yield a solution (lacked convergence) under these

conditions, returning fewer than the required 100 replications.

Insert Tables 1 to 6 Here
LS/ELS Tables

Generalized Least Squares Estimation

The normal generalized least squares (GLS) and elliptical generalized least squares (EGLS)

estimation methods are compared in Tables 7 to 12. As the percent non-normal data and kurtosis

increased, the chi-square values increased, but the elliptical generalized least squares estimation method

computed lower chi-square values. The structure coefficients and root mean square error of

20
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approximation values (RMSEA) .remained similar across research conditions and were more robust
under conditions of extreme percent contamination (10%) and kurtosis (k=3) than the previous least
squares estimation methods. The elliptical generalized least squares estimation methods also performed
better under these extreme coqdiﬁons and returned the required 100 replications, except for
percent=10%, n=1000, k=3.

Inseﬁ Tables 7 to 12 Here
GLS/EGLS Tables

Maxi Likelihood Estimati

The maximum likelihood (ML) and elliptical re-weighted least squares (ERLS) estimation
methods are compared in Tables 13 to 18. As the percent non-normal data and klunosis increased, the
chi-square values increased, but the elliptical re-weighted least squares estimation method computed
lower chi-square values. The structure coefficients and root mean square error of approximation
(RMSEA) values remained similar across research conditions and were similar to results obtained using
the least squares estimation methods. The elliptical re-yv,eighted least squares estimation method
however performed better under extreme conditions and returned the required 100 replications, except
for percent = 10%, n=1000, k=3.

Insert Tables 13 to 18 Here
ML/ERLS Tables

21
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CONCLUSIONS AND RECOMMENDATIONS

The elliptical estimation methods performed better overall than the normal estimation methods in

the presence of increasing contamination and kurtosis, e.g., the normal least squares (LS) estimation

* method failed to reach a solution (lacked convergence) under increased kurtosis. The elliptical

generalized least sq@es (EGLS) estimation method overall performed better than the other estimation
methods in computing chi-square, structure coefficient, and root mean 'square error of approximation
valuesl under incre_aéing contamination and kurtosis. Previous findings by Bentler (1983a), Harlow ar;d
Newcomb (1984), Muthen and Kaplan (1985), and Tanaka (1984) which indicated that ML chi-square
estimates were too large, causing the reje'ction of a true structural equatioﬁ model too ofteh, was
supported in the study. The tendency for increased levels of kurtosis to affect elliptical estimated chi-
square statistics, as reported by Harlow (1985), was also substantiated in the present study. In
contrast, the findings by Weng and Cheng (1997) that chi-square values computed by LS, GLS, and
ML estimators differ, but the effects dummsh as sample size increased was not supported, especially
under increased kurtosis in this study.

The effects of various estimation methods on the parameter estimate in the structural equation

model was found to be minimal. This was supported by Harlow(1985), who concluded that ML and

22
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ERLS parameter estimates were comparable in a Monte Carlo simulation study; Muthen and
Kaplan(1985), who found no difference between parameter estimates using ML and GLS estimation
methods; Henly(1993), who pointed out a striking similarity between ML and GLS estimates; and
Wang, Fan, & Willson(1996) who also found the results from ML and GLS estimation methods to be
practically identical as sample size increased.

The root mean square error of approximation (RMSEA) was robust across the research
conditions and estimation methods. The root mean square error of approximation values were especially
robust in the presence of kurtosis using the elliptical estimation methods. The root mean square error of
approximation is therefore the preferred inferential approach to assessing model fit t;ecause of known

distributional properties and determination of confidence intervals for hypothesis testing.

In practice, researchers are often confronted with non-normal data, i.e., skewness and kurtosis.
Recommendations based in part on the findings in this study and related research indicate several
suggestions. First, determine the sample size and power needed to conduct a test of the structural model
using programs by MacCallum, Browne, and Sugawara (1996) and/or Schumacker & Lomax (1996).
Second, based on a comparison of non-normal .data transformation methods, use a probit regression
transformation to produce an approximate normal distributioﬁ of data to handle skewness. Third, use
the elliptical generalized least squares estimation method with non-normal kurtotic data. Fourth, report
the root mean square error of approximation (RMSEA) and associated cpnﬁdence interval to test

hypotheses concerning model fit. And finally, when reporting chi-square statistics, conduct the Bollen-
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Stine bootstrap technique to yield a test of the sufficiency of the obtained model chi-square value and/or

report the Satorra-Bentler re-scaled chi-square statistic (Chou, Bentler, Satorra, 1991).
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APPENDIX

EQS 5.7 Computer Program

/TITLE
A comparison of normal and elliptical estimation methods
/SPECIFICATIONS
CASES=1000; !(Sample Size: 1000, 5000, or 10000)
VARIABLES=4;
- METHODS=LS,ELS; ! (Compare normal and elliptical estimation methods)
MATRIX=RAW;
ANALYSIS=COVARIANCE;
/EQUATIONS
VI1=.8FI1+El;
V2=8F1+E2;
V3=8F2+E3;
V4=8F2+E4;
F2=1*F1+D2;
/VARIANCES
Fl=1; El to E4=%;
D2=*;
/SIMULATION
POPULATION=MODEL; ! (/Equations specify Bentler-Weeks model)
REPLICATIONS=100; ! (Number of replications =100)
SEED=7896543; ! (Seed for random number generator)
CONTAMINATION=.05,1; !(Population data contamination level= .05, .10 and
/Technical 'k factor=1, 2, 3)
eiter = 100;start=els; ! (Iterations and start values for elliptical estimation)
/OUTPUT
parameter estimates;standard errors;
/END

NOTE: In Cheevatanarak, S.(1999), the EQS software program was defective leading to incorrect
tabled values and conclusions. This revised EQS program was used to yield correct tabled values.
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TABLE 1 LS versus EIS method: Contamination = 5%, n = 1000

Contamination n _lS XZLS XZELS YLS YELS RMSEA RMSEA"-
LS ELS
50, 1000 1 4.2305 4.2393 -.0087  .0087 0315 .0316
@2716) @731) (1011) (1011) (024)  (.024)
, 97972 72139 -0I184 0184 0795 0663
(7045 (5.152) (1209) (1209) (037)  (.032)
3 29.6109 11.3825 1250 -.1250 .1883 1150

(16.19)  (2.592) (1.531) (1.538)  (.063) (.041)

TABLE 2 LS versus ELS method: Contamination = 5%, n = 5000

Contamination n _lS XZLS XZELS YLS YELS RMSEA RMSEA
LS ELS
59, 5000 1 4.1767 4.1820 -.0012 0012 .0148 .0149

(2.529)  (2.535) (1.008) (1.008) (.009)  (.009)
, 282544 205225 0017 -0017 0688  .0588

(12.73)  (9.193) (1.210) (1.005) (.018)  (.015)
; 138278 510223 -0481 -0053  .1944 119

(44.23)  (16.968). (1.607) (1.612) (.034)  (.021)

TABLE 3 LS versus ELS method: Contamination = 5%. n = 10000

Contamination B kK Xs XeLs Yis Yms RMSEA  RMSEA
LS ELS

5% 10000 ] 38879 - 3.8868  .0020 -0020  .0103 0103

‘ (2451) (2.442) (1.007) (1.007)  (.007) (.007)

2 49,7868 36.2468 .0001 -.0001 0667 0573

(17.960) (12.995) (1.206) (1.206)  (.012) (.010)

3 270.248 97.9009 0139 -.0139 .1936 1183

(64.657) (23.491) (1.601) (1.601)  (.025)  (.015)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in
parentheses in the tables. Results based on 100 replications (r), except when k=3 due to non-
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convergence (n = 1,000,k =3,r=79; n=5,000,k=3,r=97, n= 10,000, k=3,r=99).

TABLE 4 LS versus ELS method: Contamination = 10%. n = 1000

Contamination n k Xis X eLs Yis Yas RMSEA RMSEA
. LS ELS
10% 1000 1 4.2305 4.2393 -.0087 0087 0315 .0316
@716) (731) (1011) (1011) (024)  (.024)
2 18.1399 11.9387 .0086 -.0086 1350 .1089
(10274)  (6.632) (1.398) (1.398) (.045)  (.037)
3 39.3374 23.6486 .5394 0272 2772 2415
(20.380) (10.458) (1.783) (2.012) (.090) (.072)
TABLE 5 LS versus ELS method: Contamination = 10%. n = 5000
Contamination n k X’is X eLs Yis YeLs RMSEA RMSEA
LS ELS
10% 5000 1 4.1767 4.1820 -.0012 0012 0148 0149
(2.529)  (2.535) (1.008) (1.008) (.009)  (.009)
2 73.1212 47.4799 0084 -.0084 .1291 .1049
(21.596) (14.038) (1.005) (1.005) (020)  (.016)
3 243.548 84.0961 -4071 4071 _ 3231 1918
. (28.048) (10.651) (2.142) (2.142) (016)  (.011)

TABLE 6 LS versus ELS method: contamination = 10%. n = 10000

Contamination n k X’is X eLs Yis YeLs RMSEA  RMSEA .
LS ELS.
10% 10000 '1 3.8879 3.8868 .0020 -.0020 0103 . 0103
- 2451)  (2442) (1.007) (1.007) (007)  (007)
2 141.967 92.1144 .0032 -.0032 .1286 .1046
(33.885) (21.816) (1.406) (1.406) (016)  (013)
3 439546 152.562 -1.890 1.890 3163 .1883
Q
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Contamination )i} k X is X eLs Yis Yms RMSEA RMSEA
LS ELS

(0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in
parentheses in the tables. Results based on 100 replications (r), except when k=3 due to non-
convergence (n=1,000,k=3,r=17;n=5,000,k=3,r=5;n=10,000, k=3, r=1).

TABLE 7 GLS versus EGLS method: Contamination = 5%, n = 1000

Contamination n k X’ats XeoLs YoLs Yeais RMSEA  RMSEA
GLS EGLS
50, 1000 1 4.2199 4.2282 -.0068 .0068 .0108 .0109
2.687) (2700) (1.005) (1.005) (013)  (.013)
2 8.9916 6.5332 -.0094 .0090 .0291 .0199

(6.098) (4.379) (1.107) (1.103) (.021)  (.019)
3 289084 102459 -0112 0092 0748 .0359

(15.008) (5.197) = (1.290) (1264) (.025)  (.017)

TABLE 8 GLS versus EGLS method; Contamination = 5%, n = 5000
Contamination n 'k XoLs X ecLs YoLs Yeas RMSEA  RMSEA
GLS -~ EGLS -
5% 5000 1 4.1577 4.1629 -.0001 .0001 0046 0046
(2.520)  (2.526) (1.005) (1.005) (.005)  (.005)
2 254624 18.2719 .0007 -.0006 0256 0134

(10.827) (7.674) (1.110) (1.106) (.007)  (.019)
3 116339 39.6596 .0006 -0003 0740 0417

(34.803) (11.372) (1.301) (1.275)  (.0lD) (.006)

TABLE 9 GLS versus EGLS method: Contamination = 5%. n = 10000
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Contamination n kX X’sas  Yous Yecrs RMSEA  RMSEA
GLS EGLS

" 0000 1 381 38781 0022 0022 0027 0027
(2443)  (2.434) (1.006) (1.006) (003)  (003)

2 44.6443 32.1243 -.0006 .0007 0313 .0260

(15073) (10.707) (1.107) (L103) (005)  (.005)

3 222340 76.1177 -.0050 0068 0734 0422

(47.854) (15.914) (1.293) (1.005) (.008) (.004)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in
parentheses in the tables based on 100 replications.

TABLE 10 GLS versus EGLS method: Contamination = 10%. n = 1000

Contamination n k X oLs XecLs YoLs Yeaes RMSEA RMSEA
GLS EGLS
10% 1000 1 42199 4.2282 -.0068 .0068 0108 0109
(2.687)  (2700) (1.005) (L.005) (013)  (O013)
2 16.3307 10.4576 -.0134 0126 0518 0362
(8.802) (5.409) (1.207) (1.197) (.020)  (018)
3 52.5078 17.0954 .0203 -.0028 1078 0554
(19.686) (6.044) (1.548) (1.500) (.023)  (0l14)
TABLE 11 GLS versus EGLS method: Contamination = 10%. n = 5000
Contamination n k X aLs X &6Ls Yars Yeaes RMSEA RMSEA
: GLS EGLS
10% 5000 1 4.1577 4.1629 -.0001 0001 0046 0046
(25200 (2526) (1.005) (1.005) (.005)  (.005)
2 62.6112 39.7008 0008 -.0007 0536 0418
(17.123) (10.729) (1.206) (1.196) (.007)  (.006)
3 239.777 75.8848. .0013 -.0102 .1082 0597
(42.825) (13.401) (1.561) (.993) (.009) (.005)

TABLE 12 GLS versus EGLS method: Contamination = 10%. n = 10000
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Contamination e k XZGLS XZEGLS Yais YrGLS RMSEA RMSEA
GLS EGLS

10% 10000 1 3.8791 3.8781 .0022 -.0022 .0027 .0027
(2.443) (2.434) (1.006) (1.0Q6) (.003) (.003)

9 120921 76.6337 .0020 -.0019 .0537 .0423

(26.454) (16.420) (1 208)  (1.199) (.006) (.004)

3 476.482 150.603 .0020 -.0016 .1084 .0604

(67.304) (20.726) (1.565) (1.511) (.007) (.004)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in

parentheses in the tables based on 100 replications (r), except for n= 1,000,k = 3, r = 98.

TABLE 13 ML versus ERLS method: Contamination = 5%, n = 1000

Contémination n k X L X Eres Ym Yeres RMSE  RMSEA
AL ERLS
5% 1000 1 4.2436 42473 -.0068 .0068 0111 0111
@733)  (2756) (1.009) (1.009) (013)  (013)
D) 9.6928 7.4258 -.0105 0102 .0309 0228
(6969)  (5478) (L118) (L.114) (023)  (.021)
3 34.4752 144736 -.0160 0104 0820 0464
(20240)  (9.083) (1.339) (1314) (030)  (.022)
TABLE 14 s ERLS method: Con =59
Contamination 1 k v X Eres Yv Yemes RMSEA RMSEA
ML ERLS
5% 5000 1 4.1790 4.1919 -.0001 0001 0047 0047
(2532)  (2.542) (1.006) (1.006)  (005)  (.005)
D) 27.5948 20.926 0007 -.0005 0330 .0278
(12.300)  (9.495) (L115) (L111)  (009)  (.008)
3 140.185 56.576 0015 -.0010 0813 0504
(47.217)  (20.010) (1.337) (1.311) (.014) (.009)
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TABLE 15 ML versus ERLS method: Contamination = 5%. n = 10000

Contamination n K XZML ) XZERLS Y YERLS RMSEA RMSEA
. ML ERLS
50, 10000 1 3.8867 3.8880 .0022 -.0022 .0027 .0027

(2.449)  (2.442)  (1.006)  (1.006)  (.003)  (.003)
, 484701 368498 -0005 0008 0327  .0281

(17.268) (13.391) (1.112)  (1.108)  (.006)  (.005)
268.350 108.588 -.0047  .0050  .0807 .01l

(64.916) (27.782) (1.328)  (1.301) (.009) (.013)

o

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in
parentheses in the tables based on 100 replications.

TABLE 16 ML versus ERLS method: Contamination = 10%. n = 1000

Contamination n K XZML X ZERLS Y YERLS RMSEA RMSEA

‘ML ERLS

10% looo | 42436 42473 -0068 0068 .01l 0111
2.733)  (2.756) (1.009) (1.009) (013)  (.013)

, 185216 13.0090 -0159 0152  .0559 0428

(10.869) (7.759) (1230) (1.221) (023)  (.021)

; 659481 268282 0514 0257 1212 0726

~(28.302)  (12.471) (1.671) (1.636)  (.028) (.021)

TABLE 17 ML versus ERLS method: Contamination = 10%. n =5000

Contamination n K XZML XZERLS YML YERLS RMSEA RMSEA
ML ERLS
10% 5000 1 4.1790 4.1919 -.0001 0001 0047 0047

(2532)  (2.542) (1.006) (1.006)  (005)  (.005)
, 716210 49.9599 0006  -0007 0575 0473

(21.113) (15.285) (1.229) (1.213)  (.009)  (.007)
3 309804 121616 0027  -0110  .1230 0762
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Y&y X ErLs YL Yes RMSEA RMSEA
ML ERLS

Contamination n

I~

(65.043) (27.830) (1.675) (1.003)  (012)  (.008)

TABLE 18 ML versus ERLS method: Contamination = 10%. n = 10000

Contamination n K XZML XZERLS YML YERLS RMSEA RMSEA
ML ERLS
% 0000 1 38867 3.8880 0022  -0022 0027 0027

(2449)  (2442)  (1.006) (1.006)  (.003)  (.003)
138.753  96.809  .0019  -0020  .0576  .0478

(32.933) (23.670) (1.009) (1.215)  (007)  (.006)
618.058 242.540  .0029  -.0025  .1235  .0769

(102.49) (43.120)  (1.678)  (1.628) (.010) (.007)

Note: Standard deviations for chi-squares, parameters, and root mean square of approximation are in
parentheses in the tables based on 100 replications (r), except for n=1000, k=3, r = 96.

2

3

Figure 1 Normal Distribution
Figure 2. Elliptical Distribution

Figure 3. Bentler-Weeks Structural Equation Model
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